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The optimal pellet activity distribution for a system of consecutive reactions is analyzed numerically.
Two cases are studied: the case of unconstrained activity (without predescribed maximal concentra-
tion of active component) leading to a Dirac delta activity distribution and the case with upper bound
for the activity distribution (concentration of active component can not exceed given maximal value)
which leads to a step function profile. As the objective function global selectivity is chosen.
Examples of both cases are given. The reaction kinetics is described by Langmuir–Hinshelwood type
of equations.

Several previous works have shown that the performance of a catalyst pellet can be
improved significantly by using nonuniform activity distribution. Most important re-
sults are summarized in the recent review of Gavrilidis et al.1.

The first papers addressing the case of maximal selectivity of consecutive reactions
have been published by Vayenas and Pavlou2–5. Wu et al.6 and Ye and Yuan7 studied
nonisothermal reaction systems with arbitrary kinetics. In these papers the optimal cata-
lyst activity distribution in a symmetric porous pellet is investigated analytically by
maximizing the effectiveness factor, the global selectivity or the global yield.

In the paper by Wu et al.6 an optimality criterion was developed using the method
described in the paper of Brunovska et al.8. This optimality criterion allows to conclude
that under quite general conditions the optimal activity distribution is of the Dirac delta
type. In the paper of Ye and Yuan7 the same result was obtained by applying the maxi-
mum principle.

The catalysts with nonuniform activity distribution (egg shell, egg white, egg yolk)
are well known and have been commercially used. They are usually prepared by im-
pregnation because of its simplicity and wide use. The desired distribution effect within
the catalyst support particle depends on the chosen impregnation technique (wet or dry
impregnation, coimpregnation), concentration of precursor, time of impregnation, etc.
(see Prince and Varma9).

The aim of the present work is to estimate the optimal activity distribution in sym-
metric spherical porous catalyst particles for the case of consecutive reactions using the
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criteria from Brunovska et al.8. The role of maximal active catalyst concentration (i.e.
upper bound for the activity) is considered as well.

THEORETICAL

The Optimization Problem

The problem is to estimate the activity distribution Φ(ϕ) for which the maximal value
of the objective function is obtained. As the objective function global selectivity is
considered which represents the efficiency of the reaction system in converting the
reactants into the desired product.

Let us assume that B component is the desired product originating from key compo-
nent A. Global selectivity is defined as the ratio of the rate of production of the compo-
nent B and the rate of consumption of the component A:

S = 

∫ Φ






 ∑νBj
j = 1

J

Thj
2Rj 







 ϕn

0

1

 dϕ

∫ Φ






 ∑νAj
j = 1

J

Thj
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 ϕn

0

1

 dϕ

  . (1)

Catalyst activity is defined as the ratio of the local concentration of available cataly-
tically active sites and its volume-average value

Φ(ϕ) = 
σ(ϕ)
σ
__   , (2)

where

σ
__

 = (n + 1) ∫ σ(ϕ) ϕn dϕ
0

1

  . (3)

The activity distribution has to satisfy the following constraints

Φ(ϕ) ≥ 0  ,      Φ(ϕ) ≤ K

(n + 1) ∫ Φ(ϕ) ϕn dϕ
0

1

 = 1  , (4)
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where K  ∈  〈1,∞) is the upper bound for the activity. Its actual value depends on the
maximal admissible concentration of active component on the catalyst support.

The following optimality criterion was developed by Brunovska et al.8 and Wu et al.6

(n + 1) ∫ GΦ̂(ϕ) ϕn dϕ
0

1

 ≥ (n + 1) ∫ GΦ(ϕ) ϕn dϕ
0

1

  , (5)

where Φ̂(ϕ) is the optimal activity distribution and Φ(ϕ) is any other activity distribu-
tion. Parameter G is a function the form of which depends on the reaction scheme. The
optimality criterion practically excludes any activity distribution Φ(ϕ) which is not of
Dirac delta type (Wu et al.6). If K is tending to infinity, the maximum value of the
integral criterion (5) is always obtained by concentrating all active catalyst at the point
ϕ
__

 where the function G has its maximum. This means that

Φ̂(ϕ) = 
δ(ϕ − ϕ

__
)

(n + 1) ϕ
__

n  . (6)

If K is finite and greater than 1 and the function G is unimodal, the optimal distribution
is the step function (see Fig. 1)

Φ(ϕ) = 1 ⁄ (ϕ2
n + 1 − ϕ1

n + 1) = K  ,    ϕ ∈  〈ϕ 1, ϕ2〉

Φ(ϕ) = 0  ,        ϕ ∈  〈0, ϕ1)  and   ϕ ∈  (ϕ2, 1〉  . (7)

FIG. 1
Step function of activity distribution
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The interval 〈ϕ 1, ϕ2〉 can be found from the condition (5) by maximizing the integral
criterion using standard optimization technique and with the assumption that the reac-
tion does not take place outside the interval. The limit case for K = 1, which leads to
the uniform activity distribution

Φ(ϕ) = 1  ,        ϕ ∈  〈0, 1〉   . (8)

Application to the Case of Consecutive Reactions

Let us consider two consecutive reactions

A + H          B     j = 1 (A)

B + H          C     j = 2 (B)

occurring in a symmetric spherical porous catalyst pellet with negligible external mass
and heat transfer. We denote A to be the key component and B to be desired product.
The scheme given above corresponds i.e. to the hydrogenation reactions.

The dimensionless steady-state balances are:
– mass balances of reactants

∇ 2Yi = Φ∑ (−νij) Thj
2Rj  ,

j = 1

J

  ,     i = A, B, H (9)

– heat balance

∇ 2η = −Φ∑ 
j = 1

J

βjThj
2Rj (10)

with boundary conditions
ϕ = 0:

dYi

dϕ  = 
dη
dϕ  = 0  ,

ϕ = 1:

Yi = η = 1  ,                           i = A, B, H  . (11)
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The expressions of Langmuir–Hinshelwood type were selected as the reaction rate
concentration terms. Assuming that C is not adsorbed the reaction rates are

R1 = 
ωYAYHu1

( 1 + zAYA + zBYB + zHYH )2
  , (12)

R2 = 
ωYBYHu2

( 1 + zAYA + zBYB + zHYH )2
  . (13)

The objective function is the global selectivity defined by formula (1). The correspond-
ing system of adjoint equations (see Appendix) is as follows

∇ 2pi + Φ∑ 
j = 1

J ∂Rj

∂Yi
 Thj

2Vj = 0  ,                    i = A, B, H, (14)

∇ 2pη + Φ∑ 
j = 1

J ∂Rj

∂η  Thj
2Vj = 0 (15)

with boundary conditions

ϕ = 0:

d pi

d ϕ  = 
d pη
d ϕ  = 0  ,

ϕ = 1:

pi + pη = 0  ,                    i = A, B, H (16)

and the expression for the optimality criterion

(n + 1)
vx

2 ∫ Φ̂G ϕn dϕ
0

1

 ≥ 
(n + 1)

vx
2 ∫ ΦG ϕn dϕ

0

1

  , (17)

where

G = ∑RjThj
2Vj

j = 1

J

  ,     J = 2 (18)
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and for given reaction scheme V1, V2, vx and vy are

V1 = vx − vy − pA + pB − pH + β1pη  , (19)

V2 = − vx − pB − pH + β2pη  , (20)

vx = (n + 1)∫ Φ̂ ∑νAjThj
2Rj ϕn

j = 1

J

 dϕ
0

1

  , (21)

vy = (n + 1)∫ Φ̂ ∑νBjThj
2Rj ϕn

j = 1

J

 dϕ
0

1

  . (22)

By solving the system of partial differential equations (model equations (9) – (10) and
adjoint equations (14) – (15) we obtain function G(ϕ) which is function of adjoint
variables (in this case pA, pB, pH, pη) and its form depends on the reaction scheme and
objective function. The system of mass balance equations and adjoint equations was
solved by the collocation method10.

RESULTS AND DISCUSSION

Figure 2 represents the dependence of the global selectivity (see Eq. (1)) versus the
location of Dirac delta function. For given values of parameters (α1 = α2 = 5, β1 = β2 = 0.1,
Th2

2 ⁄ Th1
2 = 0.67) optimal location of activity is at  ϕ

__
 = 0.84 (vertical line) where the global

selectivity has its maximum.
The influence of the location of Dirac delta function on the function G(ϕ) is shown

on the Fig. 3. Curve 1 indicates that the optimal position of the activity is more closer
to the center than the proposed one (ϕ

__
 = 0.9). Curves 3 and 4 indicate that the optimal

position is closer to the pellet surface. The maximum of curve 2 corresponds to the
optimal location (ϕ

__
 = 0.84).

The case with upper bound for the activity is illustrated by Fig. 4. The optimal posi-
tion for constrained activity K = 1.7 corresponds to a step distribution located in the
region of maximal value of the function G(ϕ) (hatched area) with boundaries ϕ1 = 0.6
and ϕ2 = 0.93 (ϕ1 and ϕ2 satisfy the constraint (7), i.e. K = 1/(0.933 − 0.63) = 1.7).
Vertical line represents optimal position of the activity for K → ∞. In order to
maximize the optimality criterion (Eq. (17)) the values of the function G(ϕ) at the
points ϕ1 and ϕ2 must be equal.
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Figure 5 represents the function G(ϕ) for various positions of step activity distribu-
tion 〈ϕ 1,ϕ2〉 . In the figure it is shown that for step functions analyzed in our case the
maximum of G(ϕ) is always located in the vicinity of the optimal location of activity.

The influence of the ratio Th2
2 ⁄ Th1

2 on the location of the maximum and the shape of
the function G(ϕ) for uniform activity distribution is shown in the Fig. 6. Maximum of
G(ϕ) moves towards the surface with decreasing value of this ratio. This indicates also
the shift of the optimal active layer location towards the pellet surface.

FIG. 2
Dependence of the global selectivity S for
various locations of Dirac delta activity dis-
tribution ϕ

__
. Parameters: α1 = α2 = 5, β1 = β2 =

0.1, Th2
2 ⁄ Th1

2 = 0.67

FIG. 3
Dependence of G versus ϕ for various positions
of Dirac delta activity distribution: 1 ϕ

__
 = 0.9, 2

ϕ
__

 = 0.8, 3 ϕ
__

 = 0.7, 4 ϕ
__

 = 0.5; parameters as in
Fig. 2

FIG. 4
Dependence of G versus ϕ for optimal distribution
with constraint activity: K = 1.7, ϕ1 = 0.6, ϕ2 =
0.93; other parameters as in Fig. 2
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CONCLUSION

The results presented concern the case of consecutive reactions with Langmuir–Hin-
shelwood type of kinetic equations. The optimal catalyst pellet activity distribution
(maximizing the integral criterion (5)) for a given amount of total catalyst (i.e. constant
value of integral (3)) depends upon the upper bound for the activity K. If there is no
upper bound (K → ∞) it corresponds to a Dirac delta activity distribution. For a finite
value of the upper bound it yields a step function distribution, the position of which
depends on actual reaction patterns, values of parameters and reaction conditions.

APPENDIX

In this Appendix we derive adjoint Eqs (14) – (15) and optimality criterion (17).
If we take any Φ(ϕ) satisfying Eq. (4), then

Φ(ϕ) = Φ̂(ϕ) + ε [Φ(ϕ) − Φ̂(ϕ)] (A1)

will satisfy Eq. (4) for all 0 ≤ ε ≤ 1.
Let us denote δx = dx/dε. By differentiating (A1), Eqs (9) – (10) with boundary

conditions (11) and objective function (1) with respect to ε we obtain

FIG. 5
Dependence of G versus ϕ for various positions
of step activity distribution characterized by the
interval 〈ϕ 1,ϕ2): 1 ϕ1 = 0.5, ϕ2 = 1.0; 2 ϕ1 =
0.6, ϕ2 = 0.9; 3 ϕ1 = 0.1, ϕ2 = 1.0; 4 ϕ1 = 0.6,
ϕ2 = 0.8; 5 ϕ1 = 0.01, ϕ2 = 0.5; 6 ϕ1 = 0.4, ϕ2

= 0.5; other parameters as in Fig. 2

FIG. 6
Dependence of G versus ϕ for  uniform activity
distribution Φ(ϕ) = 1 and for various values of 
Th2

2 ⁄ Th1
2 : 1 Th2

2 ⁄ Th1
2 = 1; 2 Th2

2 ⁄ Th1
2 = 0.7; 3

Th2
2 ⁄ Th1

2 = 0.67; 4 Th2
2 ⁄ Th1

2 = 0.1; parameters:
α1 = α2 = 5, β1 = β2 = 0.1
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δΦ(ϕ) = Φ(ϕ) − Φ̂(ϕ)  , (A2)

∇ 2Yi = 






∑ 
j = 1

J

(−νij)Thj
2Rj







 δΦ + Φ







∑ 
j = 1

J

(−νij)Thj
2 






∑ 
i = 1

I ∂Rj

∂Yi
 δYi + 

∂Rj

∂η  δη













  , (A3)

∇ 2δη = −






∑ 
j = 1

J

βjThj
2Rj







 δΦ − Φ







∑ 
j = 1

J

βjThj
2 






∑ 
i = 1

I ∂Rj

∂Yi
 δYi + 

∂Rj

∂η  δη













  , (A4)

ϕ = 0:

dδYi

dϕ  = 
dδη
dϕ  = 0

ϕ = 1:

δYi = δη = 0 (A5)

and linearized objective function

δS = 
(n + 1)

vx
2  







vx ∫  
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 δΦ ϕn dϕ
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1
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∑νAj
j = 1
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Thj
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∑ 
i = 1

I ∂Rj

∂Yi
 δYi + 

∂Rj
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 ϕn dϕ







  , (A6)

where i = A, B, H.
After multiplying (A3) and (A4) by [(n + 1) ⁄ vx

2 ] pi and integrating over 〈0,1〉 , inter-
changing the sides and adding to (A6), we have

δS = 
(n + 1)

vx
2  







vx ∫  







∑νBj
j = 1

J

Thj
2Rj







 δΦ ϕn dϕ

0

1

 − vy ∫  






∑νAj
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J
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2Rj







 δΦ ϕn dϕ
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 +

+ vx ∫  
0

1

Φ 
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J
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I ∂Rj

∂Yi
 δYi + 

∂Rj

∂η  δη






 









 ϕn dϕ −
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− v
y
 ∫  

0

1

Φ 
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 ϕn dϕ + ∫ Φpη










∑βj
j = 1

J

Thj
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∑ 
i = 1

I ∂Rj

∂Yi
 δYi + 
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 ϕn dϕ

0

1 





  . (A7)

Integrating by parts the expression ∫  






∑ 
i = 1

I

pi∇ 2 δYi + pη∇ 2 δη






 ϕn dϕ

0

1

 from (A7) we

obtain  ∫  






∑ 
i = 1

I

∇ 2pi δYi + ∇ 2pη δη






 ϕn dϕ

0

1

. Then, if pi  is solution of the adjoint equations

∇ 2pi + Φ∑ 
j = 1

J ∂Rj

∂Yi
 Thj

2Vj = 0  ,          i = A, B, H (A8)

∇ 2pη + Φ∑ 
j = 1

J ∂Rj

∂η  Thj
2Vj = 0 (A9)

with boundary conditions

ϕ = 0:

dpi

dϕ  = 
dpη
dϕ  = 0

ϕ = 1:

pi = pη = 0  ,           i = A, B, H (A10)

we have

δS = 
(n + 1)

vx
2  ∫  

0

1 





∑Thj

2

j = 1

J

RjVj







 δΦ ϕn dϕ   . (A11)
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Adjoint variables (in our case pA, pB, pH, pη) correspond to Lagrangian multipliers.
Applying Eq. (A2), (A11) leads to

δS = 
(n +  1)

vx
2  ∫  

0

1 





∑Thj

2

j = 1

J

RjVj







 [Φ(ϕ) − Φ̂(ϕ)]  ϕn dϕ  , (A12)

from which we obtain the general optimality condition (17).

SYMBOLS

c concentration, mol m−3

De effective diffusion coefficient, m2 s−1

E dimensionless activation energy, E = Ea/RgT0

Ea activation energy, J mol−1

∆H heat of reaction, J mol−1

K upper bound for the activity, K ∈  〈1,∞)
K0 adsorption constant, m3 mol−1

n integer characteristic of pellet geometry (slab n = 0, cylinder n = 1, sphere n = 2)
p adjoint variable
Q adsorption heat, J mol−1

r radial pellet coordinate, m
Rj dimensionless reaction rate
Rg ideal gas constant, J mol−1 K−1

Rp catalyst pellet radius, m
S global selectivity
T temperature, K
Thj Thiele modulus, Thj

2 = Rp
2 ρξ0j / Dec0

u1 = exp [ε αA + αH + E1 ]
u2 = exp [ε αB + αH + E2 ]
Y dimensionless concentration, Y = c/c0

zA = χA exp (αAε)
zB = χB exp (αBε)
zH = χH exp (αHε)
α dimensionless adsorption heat, α = Q/RgT0

β dimensionless reaction heat, βj = (−∆Hj) Dec0/λT0

δ Dirac delta function
ε = (η − 1)/η
λ thermal conductivity, J m−1 s−1 K−1

Φ activity, Eq. (2)
η dimensionless temperature, η = T/T0

χ adsorption constant, χ = χ0  exp (α ε)
χ0 = c0K0

νij stoichiometric coefficient of i-th component in j-th reaction
σ
__

concentration of catalytically active sites
ϕ dimensionless radial coordinate, ϕ = r/Rp
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ϕ1, ϕ2 boundaries of the step function activity distribution
ϕ
__

Dirac delta function location
ρ catalyst density, kg m−3

ω = (1 + χA + χB + χH)2

∇ Nabla operator

Subscripts

A, B, C, H reactants
i i-th reactant
I number of reactants
j j-th reaction
J number of reactions in the system
0 reference conditions (i.e. bulk flow)

Superscript

^ optimal value
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